RELATIVE EFFICACY OF SOME PRODUCTS AGAINST MELOIDOGYNE JAVANICA (TREUB) CHITWOOD ON TOMATO UNDER GREENHOUSE CONDITIONS

ABDALLAH H ALMOHITHEF, FAHAD A AL-YAHYA, AHMAD S AL-HAZMI, AHMED AM DAWABAH† AND HAMZEH A LAFI*

Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

Keywords: Meloidogyne javanica, Paecilomyces lilacinus, Soft guard®, Stanes Bio Nematon®, Trichoderma longibranchiatum, Goat and camel manures

Abstract

A pot experiment was conducted to compare the efficacy of some products i.e., Stanes Bio Nematon®, Soft Guard®, Paecilomyces lilacinus, Trichoderma longibranchiatum, camel and goat manures against Meloidogyne javanica on tomato under greenhouse conditions. Based on nematode reproduction, indices of galls and egg masses, the six materials were grouped into four classes from the relatively highest efficacy of control (goat manure) to the relatively low efficacy of control (P. lilacinus).

Tomato is grown in Saudi Arabia as a commercial vegetable crop. Approximately 12,000 ha planted annually with an estimated yield of more than 200,000 tons (Ministry of environment, water, and agriculture 2018). Tomato plants are very susceptible to fungal, viral, bacterial, and nematode diseases (Lanny 2001). Generally, root-knot nematodes (Meloidogyne spp.) usually cause severe damage in many Saudi vegetable farms (Al-Hazmi et al. 1983). Meloidogyne javanica (Treub) Chitwood causes a serious loss to tomato production in the greenhouses and open fields. Root-knot nematodes are difficult to control, particularly when using a single control method (Barker et al. 1985). Although they showed varying efficacies, different materials and approaches have been used, in Saudi Arabia, to manage root-knot nematodes, including the use of nematicides, resistant cultivars, biological and physical control measures (Al-Hazmi et al. 2017, Abdelrafaa et al. 2018, Al-Hazmi et al. 2019, Dawabah et al. 2019). Collange et al. (2011) presented a review of methods for managing root-knot nematodes, including organic and inorganic fertilizers, sanitation, and biological control. Thus the present study was carried out to compare the relative efficacy of Stanes Bio Nematon®, Soft Guard®, Paecilomyces lilacinus, Trichoderma longibranchiatum, camel and goat manures as alternatives to methyl bromide for managing M. javanica on tomato under greenhouse conditions.

A pot experiment was conducted in a greenhouse (25 ± 2°C) with six different materials (Table 1). Seven treatments were arranged in a complete randomized design on a bench. Three weeks old tomato seedlings (cv. Sultana 7) were transplanted singly into each pot. An egg suspension of M. javanica was prepared from a pure greenhouse culture on tomato according to Hussey and Barker (1973). The pots were inoculated with 10,000 eggs/pot at seedling transplanting. The egg-parasitic fungus P. lilacinus and the antagonistic fungus T. longibranchiatum Rifai were isolated from pure cultures of both on potato dextrose agar. For inoculation, each fungus was cultured on wheat grains (Jatala 1986). Two weeks before transplanting the tomato seedlings, each fungal inoculum was mixed at 0.7% (10.5 g/pot) with

*Author for correspondence: <hlafi@ksu.edu.sa>. †Nematode Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Centre, 9 Gamaa Street, Giza 12619, Egypt.
potting soil in the designated pots. Two bio-products namely, Stanes Bio Nematon® (1 × 10 cfu of *P. lilacinus* per ml of the product in a liquid formula) and Soft Guard® (chitin oligosaccharides, sea crustaceans) were used in this study. Stanes Bio Nematon® (obtained from T. Stanes & Company Ltd., Tamil Nadu, India) was applied with irrigation water (5 ml/l), while Soft Guard® (obtained from Technogreen Company (LEILI), Egypt) was applied using a sprayer on shoot system (2 ml/l). The two bio-products were applied two weeks before nematode inoculation and every 2 weeks thereafter. Camel and goat manures were also used in this study. The manures were left outside on a board for one week for air-drying, and then ground and sieved. Powders were mixed with the potting soil in the designated pots at 2.0% (w:w) (20 g/kg soil). Two weeks later, the treated pots were transplanted with tomato seedlings. All seedlings were irrigated and fertilized (Hoagland and Arnon 1950). At sixty days after inoculation with the nematode, fresh plant weights, numbers of root galls, egg masses, and eggs per plant were recorded. The nematode reproduction factor (Oostenenbrink 1966) and indices of gall and egg mass (Sasser et al. 1984) were calculated on a 0-5 scale. Data were statistically analyzed followed by DMRT (SAS 2013).

Table 1. Effects of different materials on root gall and *Meloidogyne javanica* reproduction in tomato.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of galls/g of root</th>
<th>No. of egg masses/g of root</th>
<th>% eggs reduction</th>
<th>Gall index</th>
<th>Egg masses index</th>
<th>Reproduction factor</th>
<th>Relative efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>20.6 a</td>
<td>18.2 a</td>
<td>3642 a</td>
<td>-5</td>
<td>5</td>
<td>5.79</td>
<td></td>
</tr>
<tr>
<td>Paecilomyces lilacinus</td>
<td>16.2 ab</td>
<td>10.6 b</td>
<td>2126 b</td>
<td>41.6</td>
<td>5</td>
<td>4.8</td>
<td>3.38</td>
</tr>
<tr>
<td>Trichoderma longibrachiatum</td>
<td>10.6 c</td>
<td>6.4 c</td>
<td>1282 d</td>
<td>64.8</td>
<td>4.3</td>
<td>3.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Stanes Bio Nematon®</td>
<td>15.6 b</td>
<td>6.6 bc</td>
<td>1324 c</td>
<td>63.6</td>
<td>4.4</td>
<td>3.5</td>
<td>0.81</td>
</tr>
<tr>
<td>Soft Guard®</td>
<td>10.8 c</td>
<td>3.2 d</td>
<td>644 e</td>
<td>82.3</td>
<td>4.2</td>
<td>3.5</td>
<td>0.78</td>
</tr>
<tr>
<td>Camel manure</td>
<td>2.2 d</td>
<td>1.0 e</td>
<td>204 f</td>
<td>94.4</td>
<td>3.4</td>
<td>2.9</td>
<td>0.33</td>
</tr>
<tr>
<td>Goat manure</td>
<td>1.2 e</td>
<td>1.0 e</td>
<td>204 f</td>
<td>94.4</td>
<td>2.9</td>
<td>2.8</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Means in a column followed by the same letter/s are not significantly different at P≤0.05 based on DMRT. L= Low, ML= Moderately Low, MH= Moderately High and H= High. Gall index (GI): 1 = 1–2, 2 = 3–10, 3 =11–30, 4 = 31–100, and 5 = more than 100 galls per root system. Egg mass index (EMI): 1 = 1–2, 2 = 3–10, 3 = 11–30, 4 = 31–100, and 5 = more than 100 egg masses/root system. Reproduction factor (Rf) = Final nematode population (Pf)/initial inoculum (Pi).

All the tested materials except *P. lilacinus* reduced (p ≤ 0.05) the number of root galls. All tested materials also reduced the numbers of egg masses and eggs on the roots (p ≤ 0.05), indicating a great reduction (41.6-94.4%) of nematode reproduction (Table 1). Based on the nematode reproduction and indices of galls and egg masses, the six materials were grouped into four classes, ranging from the relatively lowest to the relatively highest efficacy of control. The goat manure showed the relatively highest control, whereas *P. lilacinus* showed the lowest control (Table 1).

The tested six materials showed differences in control efficacy. Goat and camel manures were the most effective materials which are inexpensive and easy to apply. Results are in agreement with previous reports (Hassan et al. 2010, Abubakar and Adamu 2004) stating that organic materials and wastes suppress reproduction of *Meloidogyne* spp. The beneficial effects of organic and wastes enhanced crop growth.
Many abiotic agents induce self-defense mechanisms against plant-parasitic nematodes. This can be an ecological solution for plant protection (Chinnasri et al. 2006). Chitin, active ingredient in Soft Guard®, stimulates the resistance activity of beneficial microorganisms to control plant-parasitic nematodes (Ashoub 2010). Furthermore, chitosan, which is derived from de-acetylated chitin, defends plants against microorganisms (Khalil and Badway 2012) and promotes plant growth (Uthairatanakij et al. 2007). From the results of the present experiment it may be concluded that use of goat or camel manure as an organic additive would be an effective approach as an alternative to methyl bromide for managing root-knot nematodes. The effects of these two materials can be enhanced by combining them with other control measures in an integrated management system. It is very surprising that *P. lilacinus* did not show any appreciable level of control. This could be due to the subculturing of the fungus several times. Further studies, particularly under field conditions, are needed to demonstrate the efficiency and applicability of these two additives.

Acknowledgments

Authors wish to thank the Agricultural Research Center and Deanship of Scientific Research, King Saud University, Saudi Arabia for supporting this work.

References

(Manuscript received on 20 March, 2019; revised on 11 December, 2020)